Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.526
Filtrar
1.
Chin J Traumatol ; 27(1): 1-10, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38065706

RESUMO

Programmed cell death 1 ligand 1 (PD-L1) is an important immunosuppressive molecule, which inhibits the function of T cells and other immune cells by binding to the receptor programmed cell death-1. The PD-L1 expression disorder plays an important role in the occurrence, development, and treatment of sepsis or other inflammatory diseases, and has become an important target for the treatment of these diseases. Mesenchymal stem cells (MSCs) are a kind of pluripotent stem cells with multiple differentiation potential. In recent years, MSCs have been found to have a strong immunosuppressive ability and are used to treat various inflammatory insults caused by hyperimmune diseases. Moreover, PD-L1 is deeply involved in the immunosuppressive events of MSCs and plays an important role in the treatment of various diseases. In this review, we will summarize the main regulatory mechanism of PD-L1 expression, and discuss various biological functions of PD-L1 in the immune regulation of MSCs.


Assuntos
Antígeno B7-H1 , Imunomodulação , Células-Tronco Mesenquimais , Humanos , Antígeno B7-H1/metabolismo , Células-Tronco Mesenquimais/imunologia , Linfócitos T/metabolismo
3.
Int J Nanomedicine ; 18: 3643-3662, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37427367

RESUMO

Pathological scars are the result of over-repair and excessive tissue proliferation of the skin injury. It may cause serious dysfunction, resulting in psychological and physiological burdens on the patients. Currently, mesenchymal stem cells-derived exosomes (MSC-Exo) displayed a promising therapeutic effect on wound repair and scar attenuation. But the regulatory mechanisms are opinions vary. In view of inflammation has long been proven as the initial factor of wound healing and scarring, and the unique immunomodulation mechanism of MSC-Exo, the utilization of MSC-Exo may be promising therapeutic for pathological scars. However, different immune cells function differently during wound repair and scar formation. The immunoregulatory mechanism of MSC-Exo would differ among different immune cells and molecules. Herein, this review gave a comprehensive summary of MSC-Exo immunomodulating different immune cells in wound healing and scar formation to provide basic theoretical references and therapeutic exploration of inflammatory wound healing and pathological scars.


Assuntos
Cicatriz , Exossomos , Sistema Imunitário , Imunomodulação , Células-Tronco Mesenquimais , Humanos , Cicatriz/imunologia , Cicatriz/patologia , Cicatriz/terapia , Exossomos/imunologia , Exossomos/patologia , Sistema Imunitário/imunologia , Sistema Imunitário/patologia , Imunomodulação/imunologia , Células-Tronco Mesenquimais/imunologia , Células-Tronco Mesenquimais/patologia , Cicatrização/imunologia
4.
J Nanobiotechnology ; 21(1): 233, 2023 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-37481646

RESUMO

BACKGROUND: The immunosuppressive microenvironment in glioma induces immunotherapy resistance and is associated with poor prognosis. Glioma-associated mesenchymal stem cells (GA-MSCs) play an important role in the formation of the immunosuppressive microenvironment, but the mechanism is still not clear. RESULTS: We found that GA-MSCs promoted the expression of CD73, an ectonucleotidase that drives immunosuppressive microenvironment maintenance by generating adenosine, on myeloid-derived suppressor cells (MDSCs) through immunosuppressive exosomal miR-21 signaling. This process was similar to the immunosuppressive signaling mediated by glioma exosomal miR-21 but more intense. Further study showed that the miR-21/SP1/DNMT1 positive feedback loop in MSCs triggered by glioma exosomal CD44 upregulated MSC exosomal miR-21 expression, amplifying the glioma exosomal immunosuppressive signal. Modified dendritic cell-derived exosomes (Dex) carrying miR-21 inhibitors could target GA-MSCs and reduce CD73 expression on MDSCs, synergizing with anti-PD-1 monoclonal antibody (mAb). CONCLUSIONS: Overall, this work reveals the critical role of MSCs in the glioma microenvironment as signal multipliers to enhance immunosuppressive signaling of glioma exosomes, and disrupting the positive feedback loop in MSCs with modified Dex could improve PD-1 blockade therapy.


Assuntos
Glioma , MicroRNAs , Células Supressoras Mieloides , Humanos , Retroalimentação , Imunossupressores , MicroRNAs/genética , Microambiente Tumoral , Células-Tronco Mesenquimais/imunologia , Células-Tronco Mesenquimais/metabolismo , Exossomos/genética , Exossomos/metabolismo , Fator de Transcrição Sp1
5.
ACS Biomater Sci Eng ; 9(8): 4916-4928, 2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-37390452

RESUMO

Craniomaxillofacial (CMF) bone injuries represent particularly challenging environments for regenerative healing due to their large sizes, irregular and unique defect shapes, angiogenic requirements, and mechanical stabilization needs. These defects also exhibit a heightened inflammatory environment that can complicate the healing process. This study investigates the influence of the initial inflammatory stance of human mesenchymal stem cells (hMSCs) on key osteogenic, angiogenic, and immunomodulatory criteria when cultured in a class of mineralized collagen scaffolds under development for CMF bone repair. We previously showed that changes in scaffold pore anisotropy and glycosaminoglycan content can significantly alter the regenerative activity of both MSCs and macrophages. While MSCs are known to adopt an immunomodulatory phenotype in response to inflammatory stimuli, here, we define the nature and persistence of MSC osteogenic, angiogenic, and immunomodulatory phenotypes in a 3D mineralized collagen environment, and further, whether changes to scaffold architecture and organic composition can blunt or accentuate this response as a function of inflammatory licensing. Notably, we found that a one-time licensing treatment of MSCs induced higher immunomodulatory potential compared to basal MSCs as observed by sustained immunomodulatory gene expression throughout the first 7 days as well as an increase in immunomodulatory cytokine (PGE2 and IL-6) expression throughout a 21-day culture period. Further, heparin scaffolds facilitated higher osteogenic cytokine secretion but lower immunomodulatory cytokine secretion compared to chondroitin-6-sulfate scaffolds. Anisotropic scaffolds facilitated higher secretion of both osteogenic protein OPG and immunomodulatory cytokines (PGE2 and IL-6) compared to isotropic scaffolds. These results highlight the importance of scaffold properties on the sustained kinetics of cell response to an inflammatory stimulus. The development of a biomaterial scaffold capable of interfacing with hMSCs to facilitate both immunomodulatory and osteogenic responses is an essential next step to determining the quality and kinetics of craniofacial bone repair.


Assuntos
Células-Tronco Mesenquimais , Humanos , Células-Tronco Mesenquimais/imunologia , Células-Tronco Mesenquimais/metabolismo , Imunomodulação , Inflamação/imunologia , Materiais Biocompatíveis , Feminino , Adulto Jovem , Reagentes de Ligações Cruzadas/química , Células Cultivadas , Heparina/química , Citocinas/imunologia , Regulação da Expressão Gênica
6.
Bull Exp Biol Med ; 174(4): 544-548, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36894814

RESUMO

We studied the influence of activated innate and adaptive immune cells on the production of growth factors by human adipose tissue multipotent mesenchymal stromal cells (MSC). MSC showed immunosuppressive properties in vitro: decreased activation and proliferation of stimulated immune cells. T-cell interaction with MSC resulted with increased secretion of EGF, PDGF-AB/BB, FGF-2, and VEGF growth factors. Co-culturing with natural killer cells also stimulated TGFα production. The intensity of the effect varied depending on the type of immune cells. Natural killer caused a more significant increase in PDGF-AB/BB and FGF-2 secretion, while VEGF secretion increased stronger after co-culturing with T cells. The obtained data indicate the possibility of increasing reparative potential of MSC under the influence of inflammatory microenvironment.


Assuntos
Microambiente Celular , Inflamação , Células-Tronco Mesenquimais , Humanos , Becaplermina , Proliferação de Células , Microambiente Celular/imunologia , Técnicas de Cocultura , Fator 2 de Crescimento de Fibroblastos/farmacologia , Fator A de Crescimento do Endotélio Vascular , Células-Tronco Mesenquimais/imunologia , Células-Tronco Mesenquimais/metabolismo , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Comunicação Parácrina/imunologia , Inflamação/imunologia , Inflamação/metabolismo
7.
Ren Fail ; 45(1): 2187229, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36883358

RESUMO

OBJECTIVE: The present study investigated the specific mechanism by which mesenchymal stem cells (MSCs) protect against sepsis-associated acute kidney injury (SA-AKI). METHODS: Male C57BL/6 mice underwent cecal ligation and puncture surgery to induce sepsis and then received either normal IgG or MSCs (1 × 106 cells, intravenously) plus Gal-9 or soluble Tim-3 3 h after surgery. RESULTS: After cecal ligation and puncture surgery, the mice injected with Gal-9 or MSCs plus Gal-9 had a higher survival rate than the mice in the IgG treatment group. Treatment with MSCs plus Gal-9 decreased serum creatinine and blood urea nitrogen levels, improved tubular function recovery, reduced IL-17 and RORγt levels and induced IL-10 and FOXP3 expression. Additionally, the Th17/Treg cell balance was altered. However, when soluble Tim-3 was used to block the Gal-9/Tim-3 pathway, the septic mice developed kidney injury and exhibited increased mortality. Treatment with MSCs plus soluble Tim-3 blunted the therapeutic effect of MSCs, inhibited the induction of Tregs, and suppressed the inhibition of differentiation into Th17 cells. CONCLUSION: Treatment with MSCs significantly reversed the Th1/Th2 balance. Thus, the Gal-9/Tim-3 pathway may be an important mechanism of MSC-mediated protection against SA-AKI.


Assuntos
Injúria Renal Aguda , Homeostase , Células-Tronco Mesenquimais , Sepse , Animais , Masculino , Camundongos , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/imunologia , Injúria Renal Aguda/prevenção & controle , Injúria Renal Aguda/terapia , Receptor Celular 2 do Vírus da Hepatite A , Homeostase/imunologia , Imunoglobulina G/uso terapêutico , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/imunologia , Camundongos Endogâmicos C57BL , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/imunologia , Sepse/complicações , Sepse/imunologia
8.
Cell Transplant ; 32: 9636897221148775, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36661068

RESUMO

Systemic lupus erythematosus (SLE) is a chronic systemic autoimmune disease associated with impaired organ functions that can seriously affect the daily life of patients. Recent SLE therapies frequently elicit adverse reactions and side effects in patients, and clinical heterogeneity is considerable. Mesenchymal stromal cells (MSCs) have anti-inflammatory, tissue repair, and immunomodulatory properties. Their ability to treat autoimmune diseases largely depends on secreted extracellular vesicles, especially exosomes. The effects of exosomes and microRNAs (miRNAs) on SLE have recently attracted interest. This review summarizes the applications of MSCs derived from bone marrow, adipocyte tissue, umbilical cord, synovial membrane, and gingival tissue, as well as exosomes to treating SLE and the key roles of miRNAs. The efficacy of MSCs infusion in SLE patients with impaired autologous MSCs are reviewed, and the potential of exosomes and their contents as drug delivery vectors for treating SLE and other autoimmune diseases in the future are briefly described.


Assuntos
Exossomos , Lúpus Eritematoso Sistêmico , Células-Tronco Mesenquimais , MicroRNAs , Humanos , Doenças Autoimunes/genética , Doenças Autoimunes/imunologia , Doenças Autoimunes/terapia , Exossomos/genética , Exossomos/imunologia , Vesículas Extracelulares/genética , Vesículas Extracelulares/imunologia , Lúpus Eritematoso Sistêmico/genética , Lúpus Eritematoso Sistêmico/imunologia , Lúpus Eritematoso Sistêmico/terapia , MicroRNAs/genética , MicroRNAs/imunologia , Células-Tronco Mesenquimais/imunologia
9.
Allergol. immunopatol ; 51(1): 133-139, ene. 2023. graf
Artigo em Inglês | IBECS | ID: ibc-214028

RESUMO

Background: Bone marrow mesenchymal stem cells (BMSCs), with the abilities of multidirectional differentiation and self-renewal, have been widely used in bone repair and regeneration of inflammation-stimulated oral diseases. Galangin is a flavonoid isolated from Alpinia officinarum, exerts anti-obesity, antitumor, and anti-inflammation pharmacological effects. The roles of galangin in lipopolysaccharide-induced inflammation and osteogenic differentiation of BMSCs were investigated. Methods: BMSCs were isolated from rat bone marrow and identified by flow cytometry. The isolated BMSCs were treated with 1 μg/mL lipopolysaccharides or cotreated with lipopolysaccharides and different concentrations of galangin. Cell viability and apoptosis were detected by MTT (tetrazolium component) and flow cytometry. ELISA was used to detect inflammation. Alizarin red staining was used to investigate osteogenic differentiation. Results: The rat BMSCs showed negative rate of CD34, and positive rate of CD29 and CD44. Lipopolysaccharides treatment reduced cell viability of BMSCs, and promoted the cell apoptosis. Incubation with galangin enhanced cell viability of lipopolysaccharide-stimulated BMSCs, and suppressed the cell apoptosis. Galangin decreased levels of TNF-α, IL-1β, and IL-6 in lipopolysaccharide-stimulated BMSCs through down-regulation of NF-κB phosphorylation (p-NF-κB). Galangin up-regulated expression of osteo-specific proteins, collagen type I alpha 1 (COL1A1), osteopontin (OPN), and runt-related transcription factor 2 (RUNX2), to promote the osteogenic differentiation of lipopolysaccharide-stimulated BMSCs. Protein expression of p-AKT and p-mTOR in lipopolysaccharide-stimulated BMSCs were increased by galangin treatment. Conclusion: Galangin exerted an anti-inflammatory effect against lipopolysaccharide- stimulated BMSCs and promoted osteogenic differentiation through the activation of AKT/ mTOR signaling (AU)


Assuntos
Humanos , Serina-Treonina Quinases TOR/imunologia , Células-Tronco Mesenquimais/imunologia , Proteínas Proto-Oncogênicas c-akt/imunologia , Lipopolissacarídeos , Inflamação/imunologia , Diferenciação Celular , Proliferação de Células , Transdução de Sinais , Citometria de Fluxo
10.
Mol Ther ; 31(3): 890-908, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36566348

RESUMO

Mesenchymal stem cells (MSCs) are ubiquitous multipotent cells that exhibit significant therapeutic potentials in a variety of disorders. Nevertheless, their clinical efficacy is limited owing to poor survival, low rate of engraftment, and impaired potency upon transplantation. Spheroidal three-dimensional (3D) culture of MSCs (MSC3D) has been proven to better preserve their in vivo functional properties. However, the molecular mechanisms underlying the improvement in MSC function by spheroid formation are not clearly understood. NLRP3 inflammasomes, a key component of the innate immune system, have recently been shown to play a role in cell fate decision of MSCs. The present study examined the role of NLRP3 inflammasomes in the survival and potency of MSC spheroids. We found that MSC3D led to decreased activation of NLRP3 inflammasomes through alleviation of ER stress in an autophagy-dependent manner. Importantly, downregulation of NLRP3 inflammasomes signaling critically contributes to the enhanced survival rate in MSC3D through modulation of pyroptosis and apoptosis. The critical role of NLRP3 inflammasome suppression in the enhanced therapeutic efficacy of MSC spheroids was further confirmed in an in vivo mouse model of DSS-induced colitis. These findings suggest that 3D culture confers survival and functional advantages to MSCs by suppressing NLRP3 inflammasome activation.


Assuntos
Colite , Inflamassomos , Células-Tronco Mesenquimais , Animais , Camundongos , Colite/induzido quimicamente , Colite/genética , Colite/imunologia , Inflamassomos/genética , Inflamassomos/imunologia , Células-Tronco Mesenquimais/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Transdução de Sinais , Técnicas de Cultura de Células em Três Dimensões
11.
Cells ; 11(24)2022 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-36552765

RESUMO

The perivascular localization of endometrial mesenchymal stem/stromal cells (eMSC) allows them to sense local and distant tissue damage, promoting tissue repair and healing. Our hypothesis is that eMSC therapeutic effects are largely exerted via their exosomal secretome (eMSC EXOs) by targeting the immune system and angiogenic modulation. For this purpose, EXOs isolated from Crude and CD146+ eMSC populations were compared for their miRNA therapeutic signatures and immunomodulatory functionality under inflammatory conditions. eMSC EXOs profiling revealed 121 in Crude and 88 in CD146+ miRNAs, with 82 commonly present in both populations. Reactome and KEGG analysis of miRNAs highly present in eMSC EXOs indicated their involvement among others in immune system regulation. From the commonly present miRNAs, four miRNAs (hsa-miR-320e, hsa-miR-182-3p, hsa-miR-378g, hsa-let-7e-5p) were more enriched in CD146+ eMSC EXOs. These miRNAs are involved in macrophage polarization, T cell activation, and regulation of inflammatory cytokine transcription (i.e., TNF-α, IL-1ß, and IL-6). Functionally, stimulated macrophages exposed to eMSC EXOs demonstrated a switch towards an alternate M2 status and reduced phagocytic capacity compared to stimulated alone. However, eMSC EXOs did not suppress stimulated human peripheral blood mononuclear cell proliferation, but significantly reduced secretion of 13 pro-inflammatory molecules compared to stimulated alone. In parallel, two anti-inflammatory proteins, IL-10 and IL-13, showed higher secretion, especially upon CD146+ eMSC EXO exposure. Our study suggests that eMSC, and even more, the CD146+ subpopulation, possess exosomal secretomes with strong immunomodulatory miRNA attributes. The resulting evidence could serve as a foundation for eMSC EXO-based therapeutics for the resolution of detrimental aspects of tissue inflammation.


Assuntos
Antígeno CD146 , Inflamação , Células-Tronco Mesenquimais , MicroRNAs , Humanos , Antígeno CD146/genética , Antígeno CD146/imunologia , Leucócitos Mononucleares/imunologia , Células-Tronco Mesenquimais/imunologia , MicroRNAs/genética , MicroRNAs/imunologia , Secretoma/imunologia , Inflamação/genética , Inflamação/imunologia
12.
Cell Death Dis ; 13(11): 996, 2022 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-36433947

RESUMO

Psoriasis is currently an incurable skin disorder mainly driven by a chronic inflammatory response. We found that subcutaneous application of umbilical cord- derived mesenchymal stem/stromal cells (MSCs) primed by IFN-γ and TNF-α, referred to as MSCs-IT, exhibited remarkable therapeutic efficacy on imiquimod (IMQ)-induced psoriasis-like inflammation in mice. Neutrophil infiltration, a hallmark of psoriasis, was significantly reduced after treatment with MSCs-IT. We further demonstrated that the effects of MSCs-IT were mediated by tumor necrosis factor (TNF) stimulating gene-6 (TSG-6), which was greatly upregulated in MSCs upon IFN-γ and TNF-α stimulation. MSCs transduced with TSG-6 siRNA lost their therapeutic efficacy while recombinant TSG-6 applied alone could also reduce neutrophil infiltration and alleviate the psoriatic lesions. Furthermore, we demonstrated that TSG-6 could inhibit neutrophil recruitment by decreasing the expression of CXCL1, which may be related to the reduced level of STAT1 phosphorylation in the keratinocytes. Thus, blocking neutrophil recruitment by MSCs-IT or TSG-6 has potential for therapeutic application in human psoriasis.


Assuntos
Células-Tronco Mesenquimais , Neutrófilos , Psoríase , Animais , Humanos , Camundongos , Citocinas , Fatores Imunológicos , Inflamação/genética , Inflamação/imunologia , Células-Tronco Mesenquimais/imunologia , Neutrófilos/imunologia , Psoríase/genética , Psoríase/imunologia , Psoríase/terapia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/imunologia
13.
Stem Cell Res Ther ; 13(1): 448, 2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-36064450

RESUMO

BACKGROUND: Adipose-derived stem cells (ADSCs) have provided promising applications for Crohn's disease (CD). However, the practical efficacy of ADSCs remains controversial, and their mechanism is still unclear. Based on the pathogenesis of dysregulated immune responses and abnormal lymphatic alterations in CD, vascular endothelial growth factor-C (VEGF-C) is thought to be a favourable growth factor to optimize ADSCs. We aimed to investigate the efficacy of VEGF-C-stimulated ADSCs and their dual mechanisms in both inhibiting inflammation "IN" and promoting inflammation "OUT" in the intestine. METHODS: Human stem cells isolated from adipose tissues were identified, pretreated with or without 100 ng/ml VEGF-C and analysed for the secretion of cell culture supernatants in vitro. Lymphatic endothelial cells (LECs) were treated with ADSCs-conditioned medium or co-cultured with ADSCs and VEGF-C stimulated ADSCs. Changes in LECs transmigration, and VEGF-C/VEGFR-3 mRNA levels were assessed by transwell chamber assay and qRT-PCR. ADSCs and VEGF-C-stimulated ADSCs were intraperitoneally injected into mice with TNBS-induced chronic colitis. ADSCs homing and lymphatic vessel density (LVD) were evaluated by immunofluorescence staining. Lymphatic drainage was assessed using Evans blue. Cytokines and growth factors expression was detected respectively by ELISA and qRT-PCR. The protein levels of VEGF-C/VEGFR-3-mediated downstream signals and the NF-κB pathway were assayed by western blot. Faecal microbiota was measured by 16S rRNA sequencing. RESULTS: ADSCs stimulated with VEGF-C released higher levels of growth factors (VEGF-C, TGF-ß1, and FGF-2) and lower expression of cytokines (IFN-γ and IL-6) in cell supernatants than ADSCs in vitro (all P < 0.05). Secretome released by VEGF-C stimulated ADSCs exhibited a stronger LEC migratory capability and led to elevated VEGF-C/VEGFR-3 expression, but these effects were markedly attenuated by VEGFR-3 inhibitor. VEGF-C-stimulated ADSCs homing to the inflamed colon and mesenteric lymph nodes (MLNs) can exert stronger efficacy in improving colitis symptoms, reducing inflammatory cell infiltration, and significantly enhancing lymphatic drainage. The mRNA levels and protein concentrations of anti-inflammatory cytokines and growth factors were markedly increased with decreased proinflammatory cytokines in the mice treated with VEGF-C-stimulated ADSCs. Systemic administration of VEGF-C-stimulated ADSCs upregulated the colonic VEGF-C/VEGFR-3 pathway and activated downstream AKT and ERK phosphorylation signalling, accompanied by decreased NF-κB p65 expression. A higher abundance of faecal p-Bacteroidetes and lower p-Firmicutes were detected in mice treated with VEGF-C-stimulated ADSCs (all P < 0.05). CONCLUSION: VEGF-C-stimulated ADSCs improve chronic intestinal inflammation by promoting lymphatic drainage and enhancing paracrine signalling via activation of VEGF-C/VEGFR-3-mediated signalling and inhibition of the NF-κB pathway. Our study may provide a new insight into optimizing ADSCs treatment and investigating potential mechanisms in CD.


Assuntos
Colite , Células-Tronco Mesenquimais , NF-kappa B , Fator C de Crescimento do Endotélio Vascular , Receptor 3 de Fatores de Crescimento do Endotélio Vascular , Inibidores da Angiogênese , Animais , Colite/metabolismo , Citocinas/metabolismo , Células Endoteliais/metabolismo , Humanos , Inflamação/metabolismo , Inflamação/terapia , Células-Tronco Mesenquimais/imunologia , Camundongos , NF-kappa B/imunologia , RNA Mensageiro/metabolismo , RNA Ribossômico 16S/metabolismo , Secretoma/imunologia , Células-Tronco/metabolismo , Fator C de Crescimento do Endotélio Vascular/genética , Fator C de Crescimento do Endotélio Vascular/imunologia , Fator C de Crescimento do Endotélio Vascular/farmacologia , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo
14.
Signal Transduct Target Ther ; 7(1): 307, 2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-36064538

RESUMO

Mesenchymal stromal cells (MSCs) have been considered a promising alternative for treatment of acute respiratory distress syndrome (ARDS). However, there is significant heterogeneity in their therapeutic efficacy, largely owing to the incomplete understanding of the mechanisms underlying the therapeutic activities of MSCs. Here, we hypothesize that the cholinergic anti-inflammatory pathway (CAP), which is recognized as a neuroimmunological pathway, may be involved in the therapeutic mechanisms by which MSCs mitigate ARDS. Using lipopolysaccharide (LPS) and bacterial lung inflammation models, we found that inflammatory cell infiltration and Evans blue leakage were reduced and that the expression levels of choline acetyltransferase (ChAT) and vesicular acetylcholine transporter (VAChT) in lung tissue were significantly increased 6 hours after MSC infusion. When the vagus nerve was blocked or α7 nicotinic acetylcholine (ACh) receptor (α7nAChR)-knockout mice were used, the therapeutic effects of MSCs were significantly reduced, suggesting that the CAP may play an important role in the effects of MSCs in ARDS treatment. Our results further showed that MSC-derived prostaglandin E2 (PGE2) likely promoted ACh synthesis and release. Additionally, based on the efficacy of nAChR and α7nAChR agonists, we found that lobeline, the nicotinic cholinergic receptor excitation stimulant, may attenuate pulmonary inflammation and alleviate respiratory symptoms of ARDS patients in a clinical study (ChiCTR2100047403). In summary, we reveal a previously unrecognized MSC-mediated mechanism of CAP activation as the means by which MSCs alleviate ARDS-like syndrome, providing insight into the clinical translation of MSCs or CAP-related strategies for the treatment of patients with ARDS.


Assuntos
Transplante de Células-Tronco Mesenquimais , Neuroimunomodulação , Síndrome do Desconforto Respiratório , Receptor Nicotínico de Acetilcolina alfa7 , Animais , Células-Tronco Mesenquimais/imunologia , Camundongos , Camundongos Knockout , Neuroimunomodulação/genética , Neuroimunomodulação/imunologia , Síndrome do Desconforto Respiratório/genética , Síndrome do Desconforto Respiratório/imunologia , Síndrome do Desconforto Respiratório/terapia , Receptor Nicotínico de Acetilcolina alfa7/genética , Receptor Nicotínico de Acetilcolina alfa7/imunologia
15.
Mol Med Rep ; 26(3)2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35856408

RESUMO

Sepsis serves as a leading cause of admission to and death of patients in the intensive care unit (ICU) and is described as a systemic inflammatory response syndrome caused by abnormal host response to infection. Adipose­derived mesenchymal stem cells (ADSCs) have exhibited reliable and promising clinical application potential in multiple disorders. However, the function and the mechanism of ADSCs in sepsis remain elusive. In the present study, the crucial inhibitory effect of ADSC­derived hydroxy­carboxylic acid receptor 1 (HCAR1) on sepsis was identified. Reverse transcription quantitative­PCR determined that the mRNA expression of HCAR1 was reduced while the mRNA expression of Toll­like receptor 4 (TLR4), major histocompatibility complex class II (MHC II), NOD­like receptor family pyrin domain containing 3 (NLRP3), and the levels of interleukin­1ß (IL­1ß), tumor necrosis factor­α (TNF­α), interleukin­10 (IL­10), and interleukin­18 (IL­18) were enhanced in the peripheral blood of patients with sepsis. The expression of HCAR1 was negatively correlated with TLR4 (r=­0.666), MHC II (r=­0.587), and NLRP3 (r=­0.621) expression and the expression of TLR4 was positively correlated with NLRP3 (r=0.641), IL­1ß (r=0.666), TNF­α (r=0.606), and IL­18 (r=0.624) levels in the samples. Receiver operating characteristic (ROC) curve analysis revealed that the area under the ROC curve (AUC) of HCAR1, TLR4, MHC II and NLRP3 mRNA expression was 0.830, 0.853, 0.735 and 0.945, respectively, in which NLRP3 exhibited the highest diagnostic value, and the AUC values of IL­1ß, IL­18, TNF­α, and IL­10 were 0.751, 0.841, 0.924 and 0.729, respectively, in which TNF­α exhibited the highest diagnostic value. A sepsis rat model was established by injecting lipopolysaccharide (LPS) and the rats were randomly divided into 5 groups, including a normal control group (NC group; n=6), a sepsis model group (LPS group; n=6), an ADSC transplantation group (L + M group; n=6), a combined HCAR1 receptor agonist group [L + HCAR1 inducer (Gi) + M group; n=6], and a combined HCAR1 receptor inhibitor group [L + HCAR1 blocker (Gk) + M group; n=6]. Hematoxylin and eosin staining determined that ADSCs attenuated the lung injury of septic rats and ADSC­derived HCAR1 enhanced the effect of ADSCs. The expression of HCAR1, TLR4, MHC II, NLRP3, IL­1ß, IL­18 and TNF­α levels were suppressed by ADSCs and the effect was further induced by ADSC­derived HCAR1. However, ADSC­derived HCAR1 induced the levels of anti­inflammatory factor IL­10. The negative correlation of HCAR1 expression with TLR4, MHC II, and NLRP3 expression in the peripheral blood and lung tissues of the rats was then identified. It is thus concluded that ADSC­derived HCAR1 regulates immune response in the attenuation of sepsis. ADSC­derived HCAR1 may be a promising therapeutic strategy for sepsis.


Assuntos
Tecido Adiposo , Células-Tronco Mesenquimais , Receptores Acoplados a Proteínas G , Sepse , Tecido Adiposo/citologia , Tecido Adiposo/imunologia , Animais , Imunidade , Interleucina-10/imunologia , Interleucina-18/imunologia , Lipopolissacarídeos/farmacologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , RNA Mensageiro/metabolismo , Ratos , Receptores Acoplados a Proteínas G/imunologia , Sepse/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/imunologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia
17.
Mol Biol Rep ; 49(9): 8337-8347, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35690960

RESUMO

BACKGROUND: The immunomodulatory function of mesenchymal stem cells (MSCs) has been considered to be vital for MSC-based therapies. Many works have been devoted to excavate effective strategies for enhancing the immunomodulation effect of MSCs. Nonetheless, canine MSC-mediated immunomodulation is still poorly understood. METHODS AND RESULTS: The inflammatory microenvironment was simulated through the employment of interferon-γ (IFN-γ) in a culture system. Compared with unstimulated cBMSCs, IFN-γ stimulation increased the mRNA levels of Toll-like receptor 3 (TLR3) and indoleamine 2, 3-dioxygenase 1 (IDO-1), and simultaneously enhanced the secretion of immunosuppressive molecules, including interleukin (IL)-10, hepatocyte growth factor (HGF), and kynurenine in cBMSCs. IFN-γ stimulation significantly enhanced the ability of cBMSCs and their supernatant to suppress the proliferation of murine spleen lymphocytes. Lymphocyte subtyping evaluation revealed that cBMSCs and their supernatant diminished the percentage of CD3+CD4+ and CD3+CD8+ lymphocytes compared with the control group, with a decreasing CD4+/CD8+ ratio. Notably, exposure to IFN-γ decreased the CD4+/CD8+ ratio more effectively than unstimulated cells or supernatant. Additionally, IFN-γ-stimulation increased the mRNA levels of the Th1 cytokines TNF-α, and remarkably decreased the mRNA level of the Th2 cytokine IL-4 and IL-10. CONCLUSION: Our findings substantiate that IFN-γ stimulation can enhance the immunomodulatory properties of cBMSCs by promoting TLR3-dependent activation of the IDO/kynurenine pathway, increasing the secretion of immunoregulatory molecules and strengthening interactions with T lymphocytes, which may provide a meaningful strategy for the clinical application of cBMSCs in immune-related diseases.


Assuntos
Terapia de Imunossupressão , Indolamina-Pirrol 2,3,-Dioxigenase , Interferon gama , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Receptor 3 Toll-Like , Animais , Proliferação de Células , Células Cultivadas , Cães , Terapia de Imunossupressão/métodos , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Interferon gama/farmacologia , Cinurenina/metabolismo , Cinurenina/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/imunologia , Camundongos , RNA Mensageiro/metabolismo , Receptor 3 Toll-Like/metabolismo
18.
Nat Commun ; 13(1): 856, 2022 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-35165293

RESUMO

Cell-based immunotherapies can provide safe and effective treatments for various disorders including autoimmunity, cancer, and excessive proinflammatory events in sepsis or viral infections. However, to achieve this goal there is a need for deeper understanding of mechanisms of the intercellular interactions. Regulatory T cells (Tregs) are a lymphocyte subset that maintain peripheral tolerance, whilst mesenchymal stem cells (MSCs) are multipotent nonhematopoietic progenitor cells. Despite coming from different origins, Tregs and MSCs share immunoregulatory properties that have been tested in clinical trials. Here we demonstrate how direct and indirect contact with allogenic MSCs improves Tregs' potential for accumulation of immunosuppressive adenosine and suppression of conventional T cell proliferation, making them more potent therapeutic tools. Our results also demonstrate that direct communication between Tregs and MSCs is based on transfer of active mitochondria and fragments of plasma membrane from MSCs to Tregs, an event that is HLA-dependent and associates with HLA-C and HLA-DRB1 eplet mismatch load between Treg and MSC donors.


Assuntos
Comunicação Celular/imunologia , Membrana Celular/metabolismo , Tolerância Imunológica/imunologia , Células-Tronco Mesenquimais/imunologia , Mitocôndrias/metabolismo , Linfócitos T Reguladores/imunologia , Proliferação de Células , Células Cultivadas , Feminino , Antígenos HLA-C/genética , Cadeias HLA-DRB1/genética , Humanos , Ativação Linfocitária/imunologia , Masculino
19.
Front Endocrinol (Lausanne) ; 13: 822191, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35222280

RESUMO

Type 1 diabetes (T1D) is a widespread disease, affecting approximately 41.5 million people worldwide. It is generally treated with exogenous insulin, maintaining physiological blood glucose levels but also leading to long-term therapeutic complications. Pancreatic islet cell transplantation offers a potential alternative treatment to insulin injections. Shortage of human organ donors has raised the interest for porcine islet xenotransplantation. Neonatal porcine islets are highly available, can proliferate and mature in vitro as well as after transplantation in vivo. Despite promising preclinical results, delayed insulin secretion caused by immaturity and immunogenicity of the neonatal porcine islets remains a challenge for their clinical application. Multipotent mesenchymal stromal cells (MSCs) are known to have pro-angiogenic, anti-inflammatory and immunomodulatory effects. The current state of research emphasizes the great potential of co-culture and co-transplantation of islet cells with MSCs. Studies have shown enhanced islet proliferation and maturation, insulin secretion and graft survival, resulting in an improved graft outcome. This review summarizes the immunomodulatory and anti-inflammatory properties of MSC in the context of islet transplantation.


Assuntos
Diabetes Mellitus Tipo 1/terapia , Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas/fisiologia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/fisiologia , Animais , Sobrevivência Celular , Técnicas de Cocultura , Sobrevivência de Enxerto , Humanos , Imunomodulação , Células-Tronco Mesenquimais/imunologia , Neovascularização Fisiológica , Suínos , Transplante Heterólogo
20.
Med Sci Monit ; 28: e934660, 2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35153292

RESUMO

BACKGROUND Fundamental and clinical interest in mesenchymal stem cells (MSCs) has risen dramatically over the past 3 decades. The immunomodulatory and differentiation abilities are the main mechanisms in vitro and in vivo. However, increasing evidence casts doubt on the stemness and immunogenicity of MSCs. MATERIAL AND METHODS We conducted a high-throughput 10x RNA sequencing and Smart-seq2 scRNA-seq analysis to reveal gene expression of Wharton jelly MSCs (WJ-MSCs) at a single-cell level. Multipotent differentiation, subpopulations, marker genes, human leucocyte antigen (HLA) gene expression, and cell cluster trajectory analysis were evaluated. RESULTS The WJ-MSCs had considerable heterogeneity between cells in terms of gene expression. They highly, partially, and hardly expressed genes related to mesodermal differentiation, endodermal differentiation, and ectodermal differentiation, respectively. Some cells seem to be bipotent or unipotent stem cells. Further, Monocle and cell cluster trajectory analysis demonstrated that 1 of the 3 divided clusters performed as stem cells, accounting for 12.6% of the population. The marker genes for a stem cell cluster were CRIM1, GLS, PLOD2, NEXN, ACTR2, FN1, MBNL1, LMOD1, COL3A1, NCL, SEC62, EPRS, COL5A2, COL8A1, and VCAN. In addition, the MSCs also highly, partially, and hardly expressed HLA-I antigen genes, HLA-II genes, and the HLA-G gene, respectively, indicating that MSCs probably have immunogenicity. A Kyoto Encyclopedia of Genes and Genomes pathway analysis of the 3 clusters demonstrated that they were mainly connected with viral infectious diseases, cancer, and endocrine and metabolic disorders. The most expressed transcription factors were zf-C2H2, HMG/HMGY, and Homeobox. CONCLUSIONS We found that only a subpopulation of WJ-MSCs are real stem cells and WJ-MSCs probably do not have immune privilege.


Assuntos
Privilégio Imunológico , Células-Tronco Mesenquimais/citologia , RNA/genética , Cordão Umbilical/citologia , Geleia de Wharton/citologia , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Humanos , Células-Tronco Mesenquimais/imunologia , Análise de Sequência de RNA , Fatores de Transcrição , Cordão Umbilical/imunologia , Geleia de Wharton/imunologia , Geleia de Wharton/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...